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1. INTRODUCTION

By a Cayley inner function we mean a function £(z) which is holomorphic
and has a positive imaginary part in the open upper half-plane 77 | whose
boundary function &(x -+ i0) is real a.e. on the reai line. Equivalently
£(2) = i[i — ()i + p(2)] where g(z) is defined and inner on [ in the
usual sense. If &(z) is a Cayley inner function we extend its domain of
definition to the open lower half-plane I1_ so that £(z*) = £(z)* for all
zell U ll_. We also employ the a.c. defined function £(x) = &(x — i0) =
£(x — i0) on the real line.

Let &(z) be a Cayley inner function, and let (g, &) be a fixed real interval
which is not the whole line. If we ignore sets of measure zero, then the real
line splits into a disjoint union of a Borel set 4 and its complement 4¢ in
such a way that £(x) maps 4 onto (g, b) and 4¢ onto the complement of (g, b).
We show that conversely if 4 and (a,b) are given, then there is a
one-parameter family of Cayley inner functions £(z) which have this property
with respect to 4 and (a, b). The usefulness of this observation resuits from
the fact that it leads to an evaluation of a large number of definite integrals
over 4 in terms of similar integrals over (g, ).

The applications in this paper focus on the circle of ideas surrcunding the
approximation of x* by polynomials of lower degree. Pélya (see {6, p. 711}
has shown that if 4 is a closed set with Lebesgue measure | 4 |, then
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for all # = 1, 2, 3,.... and strict inequality holds unless 4 is an inferval, in
which case there is always equality. When 4 is a disjoint union of r closed
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242 ROSENBLUM AND ROVNYAK

and bounded intervals, we associate with A the r — 1 points A;,..., A,_;
which satisfy

L dtf(z — X) = 0.

There is one such point in each of the bounded components of the com-
plement of 4. We show that

71 7—1 n—1
272t | 4 [* = min max | (" + Yoati X Y Y B/t — A
i=0 k=1 1=0

@

oy 5 By complex

for all » = 1,2, 3,.... This result complements Pdlya’s theorem with a
rational approximation scheme (2) which exactly compensates for the error
in (1). A similar result is obtained for p-norms.?

2. CAYLEY INNER FUNCTIONS

The definition of a Cayley inner function has already been given. As in the
introduction, we understand that any Cayley inner function £(z) is defined
on I1, U II_ and there satisfies £(z*) = £(z)*. By £(x) we mean the a.e.
defined function &(x) = &(x -+ i0) = &(x — i0) on the real line.

Let 4 be a Borel subset of the real line such that neither 4 nor its com-
plement 4°¢ has Lebesgue measure zero. Let a, b be extended real numbers
such that @ # b and not both @ and b are infinite. We define the arc (a, b) to be
the usual real point set (@, b) if a < b and (— o0, b) U (a, ) if a > b.
Viewing this on the great circle of real numbers on the Riemann sphere and
ignoring end points and the point at infinity, we may regard (a, b), (b, @)
as an arbitrary division of the circle into two nontrivial arcs.

2.1 DEFINITION. We say that a Cayley inner function £(2) is adapted to 4
and (a, b), or somewhat loosely that it maps 4 on (g, b), if {(x) & (a4, b) for
almost all x € 4 and &(x) € (b, a) for almost all x € 4¢,

Notice that £(z) maps 4 on (a, b) if and only if it maps 4¢ on (b, a). It is
reasonable to think of the a.e. defined mapping £:4 —(a,b) as a
“multiplicity” or ‘“‘rearrangement” function. See the example for the case
where 4 is a finite union of intervals, Example 2.3(iv), given later in this
section.

X Note added in proof. Other applications of Cayley inner functions appear in
J. D. Chandler, Analysis on unions of intervals, Dissertation, University of Virginia, 1976;

and M. Rosenblum and J. Rovnyak, Restrictions of analytic functions, II, Proc. Amer.
Math. Soc. 51 (1975), 335-343.
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We discuss briefly behavior under linear fractional transformations. The
general form of a linear fractional transformation which maps £7_ onto itself
is

¢(@) = (pz + 9)f(z -+ 5)

where p, g, r, s are real numbers such that pg — rs > 0. It is easy to see that
if {(a, b) and (c, d) are given arcs, then there is a one parameter family of
linear fractional transformations which map {7, onto itself and {a, ) onto
(¢, d). In fact, z — pz, p > 0, is the general form of a linear fractional
transformation whizh maps I7, onto itself and (0, oo} onto iself. To prove
the assertion we map both (a, &) and (c, d) onto {0, ) using translations
z — z 4 g, q real, and the inversion z — —1/z, and then we form obvious
compositions.

1t is immediate from the definitions that if £(z) is a Cayley inner function
adapted to 4 and (g, b), then (¢ < £)(z) = (&(2)) is a Cayiey inner function
adapted to 4 and (¢, d) for any linear fractional transformation ¢ which
maps I onto itself and {(a, b) onto (¢, d). It turns out that if we fix £, then
any Cayley inner function v adapted to 4 and (¢, d) has the form = g £
for some such ¢. This can be proved using our first result.

2.2 TueoreM. Let 4 and (a, b) be given. Let o(z) = (pz + q}/(rz + s} be a
linear fractional fransformation which maps 11, onio itself and (— oo, 0) onfo
{a, b). Then every Cayley inner function &(z) adapted te 4 and {a, b) has a
representation in the form

pexplk + [4(( + 2)/(t — )Ndrj(L + %)) + ¢
rexplk + [4((1 + )/t — 2)(@/(1 + ) + 5

where k is a real constant, and conversely every function of this form is a
Capley inner function adapted to 4 and (a, b).

€(2) = 3

Proof. Let £(z) be a Cayley inner function adapted to 4 and (g, b).
If ¢in denotes the linear fractional transformation inverse to ¢ under
composition, then @i ¢ is holomorphic and has positive imaginary part
in f1, . The boundary function of @it < £ is negative a.e. on 4 and positive
a.e. on A¢. Therefore (see [1])

=1+ tz j(f)

r—z 1+ 12

(et £)(z) = exp (k +j » dt) zell ,

where k is a real constant and
f() = limmt arg(gin e x + i) = xa)

a.e. on (—oo, oc). Here y, denotes the characteristic function of 4. Thus
&(z) is given by (3) in I1, . By symmetry, (3) also holds in f1_.
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The converse statement is proved by checking that

0 sl [ 1L 4

is a Cayley inner function adapted to 4 and (— co, 0) for any real constant k.
Hence ¢ = ¢ o 9 is a Cayley inner function adapted to 4 and (a, 5).
The Nevanlinna representation of a Cayley inner function has the form

R | tz dv(t
60 =atpat | tjjli;

where « and p, are real constants, p, 2> 0, and v is a singular measure on
(— o0, o) such that jf: (1 + 3T dv(t) << oo. Conversely, every nonconstant
function having this form is a Cayley inner function. These assertions follow
immediately from the general theory of functions having positive imaginary
part in I1, (see [1]).

2.3 Exampres. (i) The function &(z) = z is a Cayley inner function
which maps any arc 4 = (a, b) on itself. Using Theorem 2.2 and the relations

e (|75 ) =

exp(f: da )22_2

t—z — Z

—w <a<b<o, zell UII_, we see that the most general Cayley
inner function which maps

(a) 4= (—1,Donitself is £(z) = (z — o)/(1 —02), —1 <o <1,
) 4= (0, ®)onitselfis £&(z) = 7z, 0 < 7 < o0,

© 4 =10, ) on(—1,1)is () = —p)fz +p) 0 < p < o0,
@ 4=, —-Don(—1,Dis(l —oz)/(lc—2), -1 <o <1

(i) In case 4 is a finite union of arcs, and only in this case, any
Cayley inner function £(z) adapted to 4 and some arc (a, b) is a rational
function.

(iii) Let both 4 and (a, b) be bounded, so necessarily —o0 < a <
b << oo. It follows from Theorem 2.2 that there is a unique Cayley inner
function ¢(z) adapted to 4 and (a, b) which has a pole at infinity. It is given
by

aexp([,dtf(t — 2)) — b

O = —p(fadii —2) — 1

“
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The Nevanlinna representation in this case has the form

F ()
a@~a+|4|z+J

gkt —2z

where « is a real constant, | 4 | is the Lebesgue measure of 4, K is the smallest
closed interval which essentially contains 4, and v is a finite singular measure
supported on K. This is proved by showing first that £(z) is analytic in the
complex plane slit along K, and then that

lim £(y)/@y) = (b — @)j1 4. O]

(iv) We examine in more detail the case where (ii) and (iii) overlap, i.e,,
the case where 4 = U] (a;,b;) where —0 < a; < b, < @, < b, < =+ <
g, < b, < o and (a,b) is a bounded open interval. The Cayley inner
function £(z) in this case will always be chosen by {(4), or equivalently

b — allj(b; — z)/(a; — 2)

€0 =~ II(b; — 2)/(a; — 2) ~

-~
&)
=

Tt is easy to see that in each interval (g; , b,) in 4, £(x) increases from a to b.
In each interval (b;, a;.,), II][(b; — x)/(a; — Xx)] increases from O to oo,
and therefore £(z) has exactly one pole A; in (b; , a,.,). Clearly £(z) has a pole
at oo and exactly » poles counting multiplicity in the extended complex plane.
The Nevanlinna representation coincides with the partial fractions decom-
position in this case, and it has the form

aa-a+ldlz Z %)
where « is a real constant, | 4| = [,dt, Ay ,..., A,_; are the roots of
L dif(t — A) = 0, ®)
and
=@ —a)/L dtj(t — A)2,  j= Ly, r— i ©)

We justify the last two assertions. By (4), A; ,..., A,y are the roots of

exp ([A dt/(t — )\)) =
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which is equivalent to (8). We obtain (9) by computing the residues of the
poles in (7):

= lim (4 — %) [a exp ( L d/(r — x)) — b] / [exp ( JA df(t — x)') — 1]

2

= lim O — )b — a) / [1 — exp ( L dj(t — x))]

= (b — ) [(dldx) exp L drf(e — )]

&=A,

= @ —a)ff di—xy

for all j = 1,..., ¥ — 1. The applications in Section 4 depend on a technical
lemma which we state as

2.4 LEMMA. Let 4, (a, b), and £(z) be given as in Example 2.3(iv). Let
Ay be the linear span of functions on 4 which have the form kit) =
[€(t) — €G]/t — u) where uell UII_. For each n=1,2,3,... let A,
be the linear span of the functions on 4 of the form

ko, ki ..., k€7 where ko, ki kneiy.

Then for each n =0, 1, 2,...., %, is (n + 1) r-dimensional, and it coincides
with the linear span of functions on 4 of the form

1 1 1 .
f— )\j s (1‘ . Aj)2 303 (f _ )\j)n+l > .] -

L, — 1.
(10)

1, ¢...,t" and

Proof. First take n = 0. For every uell U ll_,

H)—tw) _b—a "D p
—u 14T TEowm—n

by (7). If we write this equation for » 4 | distinct values of u, then it is not
hard to see that the resulting system of equations can be solved
for 1, 1/(z — A,..., 1/(¢ — A,_y) as linear combinations of functions
[E(t) — £)]/(t — u), u complex. In fact, the system is linear and the coeffi-
cient matrix can be reduced to the identity by obvious elementary row and
column operations. The assertion follows for the case » = 0.

The general case is proved by induction. For any # = 0, 1, 2,..., let .#,
denote the span of the functions (10), and let .%, be the span of the functions
), E@YY(t — ADs-w, E?)(t — A,)). Then dim A, = (n -4 1)r and
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dim &, = rforalln = 0, 1, 2,... . We have shown that ¢, = .#,. Suppose
that &, = ., for some nonnegative integer n. Then 4, = X, C A ..
Lol Hyy, and A, NZ, . = (0). Hence dim A, = {n+ 1y +r =
{n -~ 2r. But A,_, C .M ,,; where dim # ., = (n + 2)r. Therefore ¢, =

A .1 - and the result follows by induction.

3. SUBSTITUTION THEORY FOR DEFINITE INTEGRALS

The main result of this section is Theorem 3.3. The procf is based on some
disk results which we develop first.

Let B({) be an inner function on the open unit disk D, . Let {{,};5; be the
nonzero zeros of B({) in D, . We extend B({) to the compiement D_of D,
excluding the points {1/{;*};>,, by requiring that B({) B{L/{*}* = | for
{e D_\{1/L*} 55, . Tt is known (see [4, p. 350]) that the boundary function

B(e”) = lim B(re'")

maps no Borel subset of the unit circle 1" having positive (Jinear Lebesgue)
measure into 2 Borel subset of I" of measure zero, This fact is used repeatedly
in the following form. If £, g are a.e. defined functions on I, then f+ B, g B
are a.e. defined functions on [, and if f = g a.e. on [, then fo B =g B
a.e. on I'. In other words “‘composition with B’ is a meaningful operzation in
the class of a.e. defined functions on I,

3.1 LemmaA. If o, B are two points in D, (D_\{1/L;*%}551), then for ali
mr=20,1,2,...,

I ¢+ 1 — B(e®) B()* 1 — B(ei®H* B o
Ef_ﬁ 1 _(eogkeilg ) B(eze)n 1 _(_eﬁ)e_ig (/3) B(e“’)*ﬂ» d@

1 — B(p) B()* .

- Sm”“l—fl)?&é—) (11

where 8,,,, denotes the Kronecker delta. We define [1 — B(B) B(c)*}j/(1 — Ba*)
by continuity when Bo* = 1.

Proof. This follows, for instance, from [2, Problems 22. 89]. We sketch
a direct proof for completeness.
it may be assumed that » > m. The identity

1 pt*  h(e) i ;
5—7;[ T‘:;e—_fe‘dg = h(y) (12}
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holds for all 4 in the Hardy space H* and all ye D, . If o, Be D, then
we write the integral in (11) in expanded form as the sum of four integrals.
Three of these integrals may be evaluated directly by (12); the fourth one is
also evaluated using (12), except that when m == n it is first necessary to
conjugate. The identity follows in this case.

If «, B € D_\{1/{;*};5,, then we obtain (11) by a similar calculation using

(1 = a%e)(1 — fe™®) = Bur(l — e%/a)(1 — e¥/f).
Next let « € D_\{1/{;*};51, B € D, , and suppose Ba* 5= 1. Then
(1 . oc*e'”’)“l(l — IBe—-iﬂ)—l
= (1 = Be){(1 — B ) — (1 — /o) ]

and the result follows in the same way. The restriction fa* = 1 is removed
by a continuity argument.
The remaining case a € D, , 8 € D_\{1/{;*};>, is handled similarly.

3.2 THEOREM. Let o, fB be two points in D, U (D_\{1/L;*};51). Then for any
gell(—m, ), go Be LN—m, 7) and

S| A -119_(62*;5(3 ) o(B(e)) df
e R T 13

where the value of [1 — B(B) B(c<)*)/(1 — Ba*) is determined by continuity
if Bo* = 1.

Proof. By Lemma 3.1, (13) is true if g(e®®) == f(ef%)* f(e®®) where fis a
polynomial in ¢®. By a theorem of Ryff [4, Theorem 1], g »>g<Bis a
bounded operator on H? and therefore (13) holds if g(e®®) = f(e®)* f(e?)
where fe H2. The proof is completed by showing that every g e LY{(—m, m)
is a linear combination of such functions. To see this, first write g as a linear
combination of integrable functions 4 such that # > 1 a.e. on (—mr, 7). Then
use the standard construction of outer functions to show that such / has the
form A(e?) = f(e'%)* f(e*%) where fe H? The result follows.

We obtain the main result of this section by transformations which take
D, , D_toll,_,II_respectively and the inner function B({) to a Cayley inner
function £(z).

3.3 THEOREM. Let &(z) be a Cayley inner function adapted to A and (a, b),
where 4 is any Borel set such that neither A nor A° has Lebesgue measure zero
and (a, b) is any arc.
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() Iffe iY—oo, o), then

dt < =

[MEGOE =

and

[ 6D — " Ew) — §(L) Py de = SO 80T 1 g

v ar
J_ . t—u* t— r— ur J_

Jorallueell UII_.
(i) Iffe L¥a, b), then

[ ireon q L < o

and

[0~ H" 60 80 ) g - 8O~ S0

J f — u* — R

foralfw, eIl UIl_.

F{)dt

249

(14

-~
et
wn

(16)

(a7

Proof. We first note that by the remarks preceding the statement of
Lemma 3.1 and the transformations used in this proof, “composition with £
is a meaningful operation in the class of a.e. defined functions on the real line.

The mapping { — z = i(1 + {)/(1 — {) carries B, ontofI_, D_onto I1_,
and the points {1/{;*},», onto certain points {z;*},», . Here we understand

that
B() = [£(2) — il/[&(2) + 1]

whenever (e D, U (D \{1/{;*};») and zell. U {1 _\{z;*},5,) are corre-

sponding points.
Now let fe LY{— o0, o). Define g(e?) on the unit circle I" by

t__
10~ (=7

Then g € LY{(—m, ), so by Theorem 3.2, g» Be LY{—r, ) and

[ e S = [ e b <

This proves {14). Similarly (15) follows from (13) in case
w=i(1+ )l —a), r=il+pC —p
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where o, § are points in D, U (D_\{1/{;*};>1). By continuity, (15) holds
for the exceptional values of » and v also.

The proof of (i) is complete. We obtain (ii) by specializing (i) to functions
which vanish off (a, b).

The applications require some special formulas which are valid under the
assumptions in Example 2.3(iv). We state these somewhat more generally
under the assumptions of Example 2.3(iii), but we do not seek maximum
generality for the formulas.

3.4 THEOREM. Let 4, (a, b), and £(z) be chosen as in Example 2.3(iii). Let
Ky be the smallest weak™* closed subspace of L=(d) which contains all functions
[E() — E@))/(t — v) whereu eIl U II_ . Iffe I[Ma, b), then f o £ € [X{4) and

RONEOLE Lk(r) dt - 1 g f: F(t) dt (18)

| 6@k fE0) @ = | k@@ d -5 [ fod 19

Jorallk, ky, k,eXy. We also have

[reoyar=2L " rar (20)

Proof. We obtain fo £ € L}(4) by (16) and the fact that £ € L*(4). By
the special case of (17) with f = 1,

L[ £ — )" E0) — £0) 4, _ E0) — EW*

b—al, t—u* t—v v — u¥

for all u,vell, UII_. Using this formula we readily deduce (19) for the
case where k, , k, are linear combinations of functions [£(r) — £w)}/(t — u),
uell_ U lI_. The general case of (19) follows by approximation. By (5)

& _ 1y

o b—a t—1iy

a.e. on 4, and so 1 € ;. Thus (18) and (20) are special cases of (19).

4. RATIONAL APPROXIMATION ON A FINITE UNION OF INTERVALS

Let X be a complex Banach space, and let Q be a linear subspace of X.
If fe X, then an element g, of Q is said to be a best approximation to f from Q
if

If— qoll = min{]| f — qll: g€ O}
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a this case we say that f — q, is orthogona! to Q, and we write / — ¢, 1 O.
WfeX, thenf ! Qifand onlyif || /i <!|f+ g forall ge Q. There is a
well-known condition for orthogonality in case X is a Lebesgue space, say
X = Le(u), 1 < p < o, where . is a o-finite measure.

4.1 Orthogonality condition. Let feL™(u), 1 <p < 0, and in case
p = 1 assume that {x: f(x) = 0} has measure zero. Let O be a linear subspace
of Lo{yu). Then f | Q if and only if

[ 117 Genf)* gdp =0, geQ

where sgnz = z/| z | for z #= 0 and sgn 0 = 0.

For a proof see [5, pp. 55-56].

Throughout the rest of the paper we take 4 = \J;(a;,5;,) where
— L < g < by < dy < by < <@, <b, << oo, Let (a,8) be any real
interval whose length b — a = | 4 | is the sum of the lengths of the intervals
in 4. Let &(2) be given by (6), and let A, ,..., A,_; be the points determined by
(8). By #; we mean the space of functions defined in Lemma 2.4, which is
the same as the space described in Theorem 3.4,

4.2 THEOREM. Assume | < p << w. Let Q(a, b) be a linear subspace of
L¥%a, by, and let O(A4) be the linear subspace of L¥(4) spanned by all functions
of the form k(x) g(€(x)) where k € Ay and qe Q(a, b). Let fe La, b), and
let g, be a best approximation to f from Q(a, b). In case p = 1, assume further
that {x: f(x} — gy(x) = O} has measure zero. Then in L2(d). g4 € is a best
approximation to f» £ from Q(4), and

Hfo g — 4o g“[_vu) - Hf” 9o I‘[L"(a.b) . (Zi\}
Proof. By Theorem 3.4 and the necessity of condition 4.1,
EJ LA — qolEO)1P {sgnl f(§(1)) — qol§(NT* K{2) g(E(x)) i

3

- i B
= [ Kydt - 5—— [ 1) — a0) = {sgnlf()) — qo(O)}* q(e) e

=0

for all k e X, and g € Q{a, b). By the sufficiency of condition 4.1, ¢, > ¢ is
& best approximation to f'o £ from Q(4). By Theorem 3.4 and the assumption
that b —a = | 4],

[ 176 — agoyz de = [ 1@y — aoye

and the proof is complete.

640/175/3-3
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For every number p, 1 < p < oo, and every n =0, 1, 2,..., there is a
unique polynomial P”(¢) in the class 2, of all polynomials of the form

P(t)=1t"+4 ap ™t + - + o, Qg 5-ees Oy_q COMpleX,
for which the minimum

ma, b) = min{|| P Pe?)

lptam
is attained. When p = 1, w0,
mP(a, by = (b — a)~1/22n,
P10 =270 — a)" Un((21 — a — B)/(b — a))
ma, by = (b — a)/22n4,
Pi) = 2720 — )" T2t — a — b)/(b — @)
for all # = 0, 1, 2,..., where T,(x), U,(x) are the Chebychev polynomials
of the first and second kind, respectively (see [6]).
We construct a rational approximation scheme which has exactly the same

minimum deviation from " over 4 as polynomial approximation over an
interval of length | 4 |.

4.3 THEOREM. For every number p, 1 < p < oo, and everyn = 1,2, 3,...,

n—1 r—1 n—1
w0140 = min |1 T w1 T T Bl — Ay
E Jj=0 k=1 1=0 ‘L‘”(d)

%, Pu complex%, (22)

and the minimum is attained for the function P{P(£(t)).

Proof. Let Q(a, b) be the subspace of L?(a, b) of polynomials of degree
at most n — 1, and let Q(4) be the subspace of L?(4) defined in Theorem 4.2.
By Lemma 2.4, Q(4) is the set of functions on 4 of the form

n—1 r—1 n—1

gt) = Y o’ + 3 Y Buf(t — W)

Jj=1 k=1 1=0

where «; , By, are complex. Let f(¢) = ™.

Suppose first that 1 < p < . If g, is the best approximation to f from
O(a, b), then f — g, = P{?. By Theorem 4.2, g, o £ is 2 best approximation
to fo & from Q(4) and (21) holds. Therefore P o & = fo & — gyo € is an
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extremal function for the right side of (22), and the value of the minimum is
m'Pa, b) = m20, | 4 ). The result follows in this case.
By the Polya algorithm (see [6, pp. 65-66]),

lim P(r) = P(1)
pon

uniformly on [a, 6]. By the generalized Pdlya algorithm (see [3}}, as p — =0
a subsequence of the extremal functions PP(£(r)) for the right side of (22}
converges uniformly on 4 to an extremal function for the case p = oo,
The function obtained in the limit necessarily has the form P/™(&(), and
the value of the minimum is

max | PYE@)| = max | PO(1) = m$(a, b) = w0, 1 4 ).
ted refa.b]

The theorem follows.
it is interesting to note that the Pélya theorem cited in the introduction
has an extension fromp = wto 1 < p < w.

4.4 COROLLARY. Assume | < p << 0. Then for everyn = 1,2,3,...,
—1

m@0,14]) < min %'1 IR T/
: i=0

oy complex> (23)

L7 }

and the inequality is strict unless A is a single interval (i.e., r = 1), in which case
equality holds.

Proof. The inequality (23) follows from (22). Since the extrema! function
for {22) is automatically unique for 1 < p < <0, equality can hold in {23)
if and only if P(&(1)) is a polynomial. The latter occurs exactly when 4
reduces to a single interval.
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