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1. INTRODUCTION

By a Cayiey inner function we mean a function g(z) which is holomorphic
and has a positive imaginary part in the open upper half-plane lLc , whose
boundary function ~(x + iO) is real a.e. on the real line. Equivalently
g(z) = i[i - <p(z)]/U + <p(z)] where <p(z) is defined and inner on llee in the
usual sense. If ~(z) is a Cayley inner function we extend its domain of
definition to the open lower half-plane ll_ so that ~(z*) = gcz)* for all
Z E II+ u ll_. We also employ the a.e. defined function g(x) = ~(x -;- iO) =
g(x - iO) on the real line.

Let g(z) be a Cayley inner function, and let (a, b) be a fixed real interval
which is not the whole line. If we ignore sets of measure zero, then the real
line splits into a disjoint union of a Borel set LI and its complement Lie in
such a way that g(x) maps LI onto (a, b) and Lie onto the complement of (a, b).
'lve show that conversely if LI and (a, b) are given, then there is a
one-parameter family of Cayley inner functions g(z) which have this property
with respect to LI and (a, b). The usefulness of this observation results from
the fact that it leads to an evaluation of a large number of definite integrals
over LI in terms of similar integrals over (a, b).

The applications in this paper focus on the circle of ideas surrounding the
approximation of x n by polynomials of lower degree. P6lya (see [6, p. 71])
has shown that if LI is a closed set with Lebesgue measure! LI i, then

. ( I n-1. [ '(
2-2n,1 I LI In :s;; mm )/max t" + L O:J' I: Cij complex [

. ,ELI j~O .I
(1)

for alln = 1,2,3,.... and strict inequality holds unless Ll is an interval, in
which case there is always equality. When Ll is a disjoint union of r closed
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and bounded intervals, we associate with LI the r - 1 points Al ,..., '\-1
which satisfy

Ldtj(t - A) = O.

There is one such point in each of the bounded components of the com
plement of LI. We show that

2-211
+1 [ LI [n = min llfE~X It n +%rXjfi X :t: :~~ flkdCt - Ak)1+1 I:

co.; , flk! comPlex! (2)

for all n = 1,2,3,.... This result complements P6lya's theorem with a
rational approximation scheme (2) which exactly compensates for the error
in (1). A similar result is obtained for p-norms.1

2. CAYLEY INNER FUNCTIONS

The definition of a Cayley inner function has already been given. As in the
introduction, we understand that any Cayley inner function g(z) is defined
on II+ u II_ and there satisfies g(z*) = g(z)*. By g(x) we mean the a.e.
defined function g(x) = g(x + iO) = g(x - iO) on the real line.

Let LI be a Borel subset of the real line such that neither LI nor its com
plement Llc has Lebesgue measure zero. Let a, b be extended real numbers
such that a =1= b and not both a and b are infinite. We define the arc (a, b) to be
the usual real point set (a, b) if a < band (- 00, b) u (a, (0) if a > b.
Viewing this on the great circle of real numbers on the Riemann sphere and
ignoring end points and the point at infinity, we may regard (a, b), (b, a)
as an arbitrary division of the circle into two nontrivial arcs.

2.1 DEFINITION. We say that a Cayley inner function g(z) is adapted to LI
and (a, b), or somewhat loosely that it maps LI on (a, b), if g(x) E (a, b) for
almost all x E LI and g(x) E (b, a) for almost all x E Llc.

Notice that g(z) maps LI on (a, b) if and only if it maps Llc on (b, a). It is
reasonable to think of the a.e. defined mapping g: LI --+ (a, b) as a
"multiplicity" or "rearrangement" function. See the example for the case
where LI is a finite union of intervals, Example 2.3(iv), given later in this
section.

1 Note added in proof Other applications of Cayley inner functions appear in
J. D. Chandler, Analysis on unions of intervals, Dissertation, University of Virginia, 1976;
and M. Rosenblum and J. Rovnyak, Restrictions of analytic functions, II, Proc. Amer.
Math. Soc. 51 (1975), 335-343.
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We discuss briefly behavior under linear fractional transformations. The
general form of a linear fractional transformation which maps II, onto itself
is

cp(z) = (pz + g)j(rz + s)

where p, g, r, s are real numbers such that pg - rs > 0. It is easy to see that
if (a, b) and (c, d) are given arcs, then there is a one parameter family of
linear fractional transformations which map II+ onto itself and (a, b) onto
(c, d). In fact, Z ~ pz, p > 0, is the general form of a linear fractional
transformation whizh maps II+ onto itself and (0, (0) onto itself. To prove
the assertion we map both (a, b) and (c, d) onto (0, (0) using translations
z ~ z -r- q, q real, and the inversion z ~ -ljz, and then \ve form obvious
compositions.

It is immediate from the definitions that if g(z) is a Cayley inner function
adapted to .1 and (a, b), then (cp c g)(z) = cp(g(z)) is a Cayley inner function
adapted to .1 and (c, d) for any linear fractional transformation rp which
maps II~ onto itself and (a, b) onto (c, d). It turns out that if we fix g, then
any Cayley inner function?] adapted to .1 and (c, d) has the form 'YJ = rp a g
for some such cp. This can be proved using our first result.

2.2 THEOREM. Let .1 and (a, b) be given. Let cp(z) = (pz + q)j(rz + s) be a
linear fractional transformation which maps II+ onto itself and (- 00, 0) onto
(a, b). Then every Cayley inner function g(z) adapted to Ll and (a, b) has a
representation in the form

g(z) = p exp(k + f.1 ((1 + tz)j(t - z))(dtjU -+- (2))) + q (3)
r exp(k + f.1 ((1 + tz)j(t - z))(dtj(l + (2))) + s

where k is a real constant, and cOJU'ersely every function of this form is a
Cayley inner function adapted toLl and (a, b).

Proof Let g(z) be a Cayley inner function adapted to Ll and Ca, b).
If <pin denotes the linear fractional transformation inverse to cp under
composition, then cpin 0 g is holomorphic and has positive imaginary part
in II+ . The boundary function of cpin 0 g is negative a.e. on Ll and positive
a.e. on .1e. Therefore (see [1])

, .+00 1 + tz ret) \
(cpillog)(z)=exp(k+j -.---lJ,·2dt), zr=ll+,

• -00 t - Z -,-- t

where k is a real constant and

f(x) = 10! 7T-
1 arg(cpin 0 g)(x + iy) = xix)

a.e. on (- 00, 00). Here X.1 denotes the characteristic function of .1. Thus
g(z) is given by (3) in JI+ . By symmetry, (3) also holds in JI_ .
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The converse statement is proved by checking that

( r 1 + tz dt )
1](z) = exp k + -----=- 1 + 2

, 'L1 t z t

is a Cayley inner function adapted to L1 and (- 00, 0) for any real constant k.
Hence g = <p a 1] is a Cayley inner function adapted to L1 and (a, b).

The Nevanlinna representation of a Cayley inner function has the form

t(_) = + + r+oo
1 + tz dv(t)

s'" ex Poz 1+ 2
'-00 t-z t

where ex and Po are real constants, Po ?o 0, and v is a singular measure on

J+oo
(- 00, 00) such that -00 (l + t 2)-1 dv(t) < 00. Conversely, every nonconstant
function having this form is a Cayley inner function. These assertions follow
immediately from the general theory of functions having positive imaginary
part in II+ (see [1]).

2.3 EXAMPLES. (i) The function g(z) = z is a Cayley inner function
which maps any arc L1 = (a, b) on itself. Using Theorem 2.2 and the relations

ex (J'oo 1 + t,z~) = -1
Pot - z 1 + t 2 , Z

(r
b dt, b - z

exp --- =---
'U t-z) a-z

- 00 < a < b < 00, Z E II+ u II_, we see that the most general Cayley
inner function which maps

(a) L1 = (-1, 1) on itself is g(z) = (z - a)j(l - az), -1 < a < 1,
(b) L1 = (0, (0) on itself is g(z) = TZ, 0< T < 00,

(c) L1 = (0, (0) on (-1,1) is g(z) = (z - p)j(z + p), °< p < 00,

(d) L1 = (1, -1) on (-1, 1) is (l - az)j(a - z), -1 < a < 1.

(ii) In case L1 is a finite union of arcs, and only in this case, any
Cayley inner function g(z) adapted to L1 and some arc (a, b) is a rational
function.

(iii) Let both L1 and (a, b) be bounded, so necessarily - 00 < a <
b < 00. It follows from Theorem 2.2 that there is a unique Cayley inner
function g(z) adapted to L1 and (a, b) which has a pole at infinity. It is given
by

a exp(fLI dtj(t - z)) - b
g(z) = exp(fLI drj(r - z)) - 1 . (4)



CAYLEY INNER FUNCTIONS

The Nevanlinna representation in this case has the form
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where iX is a real constant, ILl I is the Lebesgue measure of Ll, K is the smallest
closed interval which essentially contains Ll, and v is a finite singular measure
supported on K. This is proved by showing first that g(z) is analytic in the
complex plane slit along K, and then that

lim Wy)/(iy) = (b - a)/i Ll i.
}'---7'CO

(5)

(iv) We examine in more detail the case where (ii) and (iii) overlap, i.e.,
the case where Ll = U~ (aj , bi ) where - OCJ < a1 < b1 < a2 < b2 < ... <
Gr < b.,. < 'X) and (a, b) is a bounded open interval. The Cayley inner
function g(z) in this case will always be chosen by (4), or equivalently

~(z) = b - aIII(bj - z)/(aj - z)
- I - II{(b j - z)/(aj - z)

It is easy to see that in each interval (aj , bj ) in Ll, g(x) increases from a to b.
In each interval (b j , aj+l)' II{[(bj - x)/(aj - x)J increases from 0 to 00,

and therefore g(z) has exactly one pole Ai in (bj , aj+l)' Clearly g(z) has a pole
at co and exactly r poles counting multiplicity in the extended complex plane.
The Nevanlinna representation coincides with the partial fractions decom
position in this case, and it has the form

b - a r-l 0,

g(z) = iX + -I-Ll-I- z + j~ Aj'~ z

where iX is a real constant, I Ll I = JLl dt, Al ,"'j Ar - 1 are the roots of

r dt/(t - A) = 0,
-LI

(7\
, I J

(8)

and

Pi = (b - a)/ t dt/(t - ,\;)2, j = 1,... , I" - 1. (9)

We justify the last two assertions. By (4), A1 ,..., '\-1 are the roots of

exp (t dt/(t - A)) = ]
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which is equivalent to (8). We obtain (9) by computing the residues of the
poles in (7):

pj = ~~~ (\ - x) [aexp (f~ dt/(t - x)) - b]/[exp (j~ dtj(t - x)) - 1]

= ~~~ (A j - x)(b - a)/[1 - exp (J~ dt/(t - x))]

= -(b - a) [(d/dx) exp (L dt/(t - x))L-A
-)

= (b - a)/L dt/(t - \)2

for allj = 1,... , l' - 1. The applications in Section 4 depend on a technical
lemma which we state as

2.4 LEMMA. Let Ll, (a, b), and g(z) be given as in Example 2.3(iv). Let
~ be the linear span of functions on Ll which have the form ko(t) =
[get) - g(u)]/(t - u) where u EII+ U II_. For each n = 1,2,3,... let Jf'n

be the linear span of the functions on Ll of the form

where

Then for each n = 0, 1,2, ... ,:Yen is (n + 1) r-dimensional, and it coincides
with the linear span offunctions on L1 of the form

1 1 1
1, t, ... , t n and t _ Aj , (t _ \)2 ,... , (t _ Aj)n+1 '

Proof First take n = O. For every u E II-r u IL ,

j = 1,... , l' - 1.
(10)

get) - g(u) = b - a + rf pj
t - u I L1 [ H (A j - u)(\ - t)

by (7). If we write this equation for n + 1 distinct values of u, then it is not
hard to see that the resulting system of equations can be solved
for 1, l/(t - AI),"" 1/(t - A,.-l) as linear combinations of functions
[get) - g(u)]/(t - u), u complex. In fact, the system is linear and the coeffi
cient matrix can be reduced to the identity by obvious elementary row and
column operations. The assertion follows for the case n = O.

The general case is proved by induction. For any n = 0, 1,2,..., let vii n

denote the span of the functions (10), and let 2?n be the span of the functions
g(t)", g(t)n/(t - AI)"", g(t)"/(t - A,._1)' Then dim Jin = (n + 1)1' and
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dim 2" = r for alln = 0, L 2, .... We have shown that.)/:'~ = Jto. Suppose
that X'" = Jl n for some nonnegative integer n. Then utln = X'" C Jt~'+l'

2a+1 C J/:';H1, and j1n n 2"n-;-1 = (0). Hence dim xn+l ?' (n + 1)1' + r =

(n ~ 2)1". But f,,~, C viin+l where dim Ji"+l = (11 + 2)1'. Therefore J/:';'+l =

Jl,,-;-l' and the result follows by induction.

3. SUBSTITUTION THEORY FOR DEFINITE bTEGRALS

The main result of this section is Theorem 3.3. The proof is based on some
disk results \vhich we develop first.

Let Bm be an inner function on the open unit disk D+. Let {OJ?1 be the
nonzero zeros of B(') in D+. We extend BG) to the complement D_ of D+,
excluding the points {1/'i*};;n, by requiring that Bm B(l/'*)* = 1 for
~ EO D~\{1ni*h>1 . It is known (see [4, p. 350]) that the boundary function

maps no Borel subset of the unit circle r having positive (linear Lebesgue)
measure into a Borel subset of r of measure zero. This fact is used repeatedly
in the following form. Iff, g are a.e. defined functions on T, then f G E, goB
are a.e. defined functions on r, and if f = g a.e. on r, then foB = goB
a.e. on r. In other words "composition with B" is a meaningful operation in
the class of a.e. defined functions on r.

3.1 LEMMA. If ex, f3 are tlVO points in D+ U (D~\{1/'i*L>1)' then for all
m, 11 = 0, 1, 2, ... ,

2~ t: 1 -1 ~e:~~~ex)* B(eiO)n 1 -1 B~e;~:i~(f3) B(ei8)*'" de

= 8 1 - B(m B(ex)*
mn 1 - f3ex* (11)

where 8mn denotes the Kronecker delta. We define [1 _. B(f3) B(cx)*];'(l - f3cx*)
by continuity when f3cx* = L

Proof This follows, for instance, from [2, Problems 22. 89]. We sketch
a direct proof for completeness.

It may be assumed that n ?' m. The identity

(12)
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holds for all h in the Hardy space HI and all y E D+. If 0::, {3 E D+, then
we write the integral in (11) in expanded form as the sum of four integrals.
Three of these integrals may be evaluated directly by (12); the fourth one is
also evaluated using (12), except that when m = n it is first necessary to
conjugate. The identity follows in this case.

If 0::, {3 E D-\{lnj*};;"1 , then we obtain (11) by a similar calculation using

(1 - o::*eiB)(1 - (3e-iO) = (3o::*(1 - e-iO/o::*)(1 - eiO/(3).

Next let Ol E D_\{l/ej*}j>I' {3 E D+, and suppose {3cx* =F- 1. Then

(1 - o::*eiO)-I(1 - {3e- iO)-I

= (1 - f3a*)-I[(1 - f3e-iO)-I - (1 - e-iO/a*)-I]

and the result follows in the same way. The restriction f3a* =F- 1 is removed
by a continuity argument.

The remaining case a E D+, f3 E D-\{l/e/bI is handled similarly.

3.2 THEOREM. Let a, f3 be two points in D+ U (D-\{In/}j;)I). Thenfor any
g E D(-Tr, Tr), goB E D(-Tr, Tr) and

_1_ J+rr 1 - B(eiO) B(a)* 1 - B(eiO)* B(f3) (B(eiO)) de
2Tr _IT 1 - cx*e<o 1 - f3r'o g

= 1 - B(f3) B(o::)* . _1_ f+rr (eiO) de
1 - f3cx* 2Tr _IT g

(13)

where the value of [1 - B(f3) B(cx)*]/(1 - f3a*) is determined by continuity
if f3a* = 1.

Proof By Lemma 3.1, (13) is true if g(eiO) = f(eiO)* f(e iB) where f is a
polynomial in eiO. By a theorem of Ryff [4, Theorem 1], g ---+ goB is a
bounded operator on H2, and therefore (13) holds if g(eiO) = f(eiO)* f(e iO )
where fE H2. The proof is completed by showing that every g E D(-Tr, Tr)
is a linear combination of such functions. To see this, first write g as a linear
combination of integrable functions h such that h ;.?; 1 a.e. on (-Tr, Tr). Then
use the standard construction of outer functions to show that such h has the
form h(eiO) = f(eiO)*f(e iO) where fE H2. The result follows.

We obtain the main result of this section by transformations which take
D+, D_ to II+, II_ respectively and the inner function BG) to a Cayley inner
function g(z).

3.3 THEOREM. Let g(z) be a Cayley inner function adapted to LI and (a, b),
where LI is any Borel set such that neither LI nor LIe has Lebesgue measure zero
and (a, b) is any arc.
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(i) IffE LI(-00,00), then

and
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(l4j

for aUll, L" EII+ U ll_.

(ii) IffE pea, b), then

r
[(t)2 + 1

!f(W»i - 2 --L 1 dt < 00
• Ll t ,

and

(16)

Proof We first note that by the remarks preceding the statement of
Lemma 3.1 and the transformations used in this proof, "composition with f'
is a meaningful operation in the class of a.e. defined functions on the real line.

The mapping ~ -+ z = i(1 + W(1 - 0 carries D+ onto II_ , D_ onto IL ,
and the points {l/~j*h;'l onto certain points {z/L"l. Here we understand
that

whenever ~ E D+ U (D_\{l/V'}j>l) and Z EII~ U (II_'..{zj*Jj>l) are corre
sponding points.

Now letfE P(-00, 00). Define g(eiB) on the unit circle r by

2 (t-i'
f(t) = 1 + t 2 g t --L i)·

Then g EP( -'TT, 'TT), so by Theorem 3.2, goB E D(-T(, IT) and

This proves (14). Similarly (15) follows from (13) in case

II = i(l + cx)j(l - <l), r = i(l + (3)/(1 - (3)
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(20)

where iX, f3 are points in D+ U (D_\{lj~j*}j;n). By continuity, (15) holds
for the exceptional values of u and v also.

The proof of (i) is complete. We obtain (ii) by specializing (i) to functions
which vanish off (a, b).

The applications require some special formulas which are valid under the
assumptions in Example 2.3(iv). We state these somewhat more generally
under the assumptions of Example 2.3(iii), but we do not seek maximum
generality for the formulas.

3.4 THEOREM. Let Ll, (a, b), and g(z) be chosen as in Example 2.3(iii). Let
~ be the smallest weak* closed subspace ofLOC(Ll) which contains allfunctions
[get) - g(u)]j(t - u) where U EII+ U II_. IffE D(a, b), thenfo g E D(Ll) and

t k(t)f(g(t)) dt = t k(t) dt· b 1 a (f(t) dt (18)

J
Ll

k1(t) k 2(t)f(W» dt = t k1(t) k 2(t) dt· b ~ a (f(t) dt (19)

for all k, k1 , k 2 E ~. We also have

tf(g(t» dt = i~ la (f(t) dt.

Proof We obtain fog E D(Ll) by (16) and the fact that g E LOO(Ll). By
the special case of (17) with f = 1,

_1_ JW) - g(u)* get) - g(v) dt = g(v) - g(u)*
b - aLIt - u* t - v v - u*

for all u, v E II+ u II_. Using this formula we readily deduce (19) for the
case where k 1 , k 2 are linear combinations of functions [get) - g(u)]j(t - u),
U E II+ u II_ . The general case of (19) follows by approximation. By (5)

lim~ g(t) - ~(iy) = 1
y->C() b - a t - ly

a.e. on Ll, and so 1 E~ . Thus (18) and (20) are special cases of (19).

4. RATIONAL APPROXIMATION ON A FINITE UNION OF INTERVALS

Let X be a complex Banach space, and let Q be a linear subspace of X.
IfjE X, then an element qo of Q is said to be a best approximation toffrom Q
if

Ilf - qo II = min{llf - q II: q E Q}.



CAYLEY INNER FUNCTIONS 251

1;1 this case we say that/ - qo is orthogonal to Q, and \\le write f - 9.'0 1. Q.
If /e X, thenf .l Q if and only if II/!I ~ ',if + q Ii for all q e Q. There is a
well-known condition for orthogonality in case X is a Lebesgue space, say
X = LP(f-~), 1 ~ P < oc, where ~ is a a-finite measure.

4.1 Orthogonality condition. Let fe U(~), 1 ~ p < CfJ, and in case
p = 1 assume that {x: f(x) = O} has measure zero. Let Q be a linear subspace
of U('u). Thenf 1. Q if and only if

qEQ

where sgn z = :::/1 z ! for z =1= 0 and sgn 0 = O.
For a proof see [5, pp. 55-56].
Throughout the rest of the paper we take J = U~ (a;, bj) where

- ex, < a1 < hI < a2 < b2 < ... < a,. < h,. < oc. Let Ca, b) be any real
interval whose length b - a = I LI 1 is the sum of the lengths of the intervals
in L1. Let ~(z) be given by (6), and let Al ,... , ",.-1 be the points determined by
(8). By ~ we mean the space of functions defined in Lemma 2.4. vvhich is
the same as the space described in Theorem 3.4.

4.2 THEOREM. Assume 1 ~ p < CfJ. Let Q(a, b) be a lineal' subspace of
U'(a, b), and let Q(L1) be the lineal' subspace of LP(L1) spanned by all jimctiol1s
of the form k(x) q(~(x» where k e~ and q e Q(a, b). Let fE pea, b), mid
let go be a best approximation toffrom Q(a, b). In case p = 1, assume further
that {x: f(x) - qo(x) = O} has measure zero. Then in D'(L1). qo 0 ~ is a best
approximation to fog from Q(L1), and

(2l)

Proof By Theorem 3.4 and the necessity of condition 4.1,

f if(~Ct» - qo(g(t»IV-1 {sgn[f(g(t» - qoWt»]}* k(t) q(g(t» dt
'-1

" 1 Jb
= JL1 kIt) dt· b ~ a a I f(t) - CfoCt) Ip-l {sgn[f(t) - qo(t)]}'" q(t) dt

=0

for all k e Jra and q e Q(a, b). By the sufficiency of condition 4.1, qu" ~ is
a best approximation tor 0 gfrom Q(L1). By Theorem 3.4 and the assumption
that b - a = I L1 I,

r IfeW»~ - qo(W)I P dt = (I f(t) - qo(t)jP dr.
~ .t! .. rr

and the proof is complete.
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For every number p, 1 ~ p ~ 00, and every n = 0, 1,2,... , there is a
unique polynomial P:tl(t) in the class q;n of all polynomials of the form

pet) = t n + CXn_1t n- 1+ ... + CXO '

for which the minimum

CXo , ... , CX n - 1 conlplex,

m~'1J)(a, b) = min{11 P IILP(c<.b) : P E 2P,,}

is attained. When p = I, 00,

m~l)(a, b) = (b - a)/+lj22n ,

p~l)(t) = 2-2"(b - a)" Un«2t - a - b)/(b - a))

m~,"')(a, b) = (b - a)"/22n-t,

p~oc\t) = 2-2n+l(b - a)n Tn«2t - a - b)j(b - a))

for all n = 0, 1,2,... , where Tn (x), Un(x) are the Chebychev polynomials
of the first and second kind, respectively (see [6]).

We construct a rational approximation scheme which has exactly the same
minimum deviation from t n over LI as polynomial approximation over an
interval of length [LI I.

4.3 THEOREM. For every number p, 1 ~ p ~ 00, and every n = 1,2,3,... ,

111;:)(0, I LI I) = min \11 t n -+- nf cxJj + 'f rf fJI,z!(t - '\,.)1+111
t j~O ,,~l I~O 1LV(~)

CXj, fJh:l complex\ ' (22)

and the minimum is attained for the function P~P)(~(t)).

Proof Let Q(a, b) be the subspace of U'(a, b) of polynomials of degree
at most n - 1, and let Q(L1) be the subspace of U(L1) defined in Theorem 4.2.
By Lemma 2.4, Q(L1) is the set of functions on LI of the form

11-1 1'-1 n-l

q(t) = I OijtJ + I I fJ"z!(t - '\k)l+l

j~l I:~l I~O

where CXj, fJkl are complex. Letf(t) = tn.
Suppose first that 1 ::::;; p < 00. If qo is the best approximation to f from

Q(a, b), thenf - qo = P~P). By Theorem 4.2, qo 0 t; is a best approximation
to f 0 t; from Q(L1) and (21) holds. Therefore P~j'll 0 ~ = f 0 t; - qo 0 t; is an
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extremal function for the right side of (22), and the value of the minimum is
m;t)(a, b) = m;;'I(O, I Ll I). The result follows in this case.

By the P6lya algorithm (see [6, pp. 65-66]),

lim p~")(t) = P~CXJ)(t)
p-1'Y)

uniformly on [a, b]. By the generalized P6lya algorithm (see [3]), as p --+ .~

a subsequence of the extremal functions P;"P)(~(t)) for the right side of (22)
converges uniformly on 3 to an extremal function for the case p = ·x,
The function obtained in the limit necessarily has the form P:,CXJ)(~(t)), and
the value of the minimum is

The theorem follows.
It is interesting to note that the P6lya theorem cited in the introduction

has an extension from p = CfJ to 1 < p < 'iJ.

4.4 COROLLARY. Assume 1 < p < 7). Thenfor aer..." n = I, 2, 3" .. ,

(23)

Cind the inequality is strict unless Ll is a single interl'al (i.e., r = 1), in which case
equalit)' holds.

Proof The inequality (23) follows from (22). Since the extremal function
for (22) is automatically unique for 1 < P <7), equality can hold in (23)
if and only if P,\IJ)(~(t)) is a polynomiaL The latter occurs exactly when Ll
reduces to a single interval.
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